Improving Dependency Label Accuracy using Statistical Post-editing: A Cross-Framework Study

نویسندگان

  • Özlem Çetinoğlu
  • Anton Bryl
  • Jennifer Foster
  • Josef van Genabith
چکیده

We present a statistical post-editing method for modifying the dependency labels in a dependency analysis. We test the method using two English datasets, three parsing systems and three labelled dependency schemes. We demonstrate how it can be used both to improve label accuracy in parser output and highlight problems with and differences between constituency-to-dependency converters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Dependency Label Accuracy using Statistical Post-editing: A Cross-Framework Study

We present a statistical post-editing method for modifying the dependency labels in a dependency analysis. We test the method using two English datasets, three parsing systems and three labelled dependency schemes. We demonstrate how it can be used both to improve dependency label accuracy in parser output and highlight problems with and differences between constituency-to-dependency conversions.

متن کامل

A New Framework for Distributed Multivariate Feature Selection

Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...

متن کامل

Improving the Post-Editing Experience using Translation Recommendation: A User Study

We report findings from a user study with professional post-editors using a translation recommendation framework (He et al., 2010) to integrate Statistical Machine Translation (SMT) output with Translation Memory (TM) systems. The framework recommends SMT outputs to a TM user when it predicts that SMT outputs are more suitable for postediting than the hits provided by the TM. We analyze the eff...

متن کامل

Deepfix: Statistical Post-editing of Statistical Machine Translation Using Deep Syntactic Analysis

Deepfix is a statistical post-editing system for improving the quality of statistical machine translation outputs. It attempts to correct errors in verb-noun valency using deep syntactic analysis and a simple probabilistic model of valency. On the English-to-Czech translation pair, we show that statistical post-editing of statistical machine translation leads to an improvement of the translatio...

متن کامل

Improving cross-domain dependency parsing with dependency-derived clusters

This paper describes a semi-supervised approach to improving statistical dependency parsing using dependency-based word clusters. After applying a baseline parser to unlabeled text, clusters are induced using K-means with word features based on the dependency structures. The parser is then re-trained using information about the clusters, yielding improved parsing accuracy on a range of differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011